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Figure 1: ContactOpt pipeline. Left: A pose estimator generates a hand pose. Middle: DeepContact estimates where contact
should occur (target contact). Right: The hand pose is optimized to achieve target contact via a contact model (DiffContact).

Abstract
Physical contact between hands and objects plays a crit-

ical role in human grasps. We show that optimizing the pose
of a hand to achieve expected contact with an object can im-
prove hand poses inferred via image-based methods. Given
a hand mesh and an object mesh, a deep model trained on
ground truth contact data infers desirable contact across
the surfaces of the meshes. Then, ContactOpt efficiently
optimizes the pose of the hand to achieve desirable con-
tact using a differentiable contact model. Notably, our con-
tact model encourages mesh interpenetration to approxi-
mate deformable soft tissue in the hand. In our evaluations,
our methods resulted in grasps that better matched ground
truth contact, had lower kinematic error, and were signifi-
cantly preferred by human participants. Code for this work
will be publicly released.

1. Introduction
The availability of data, hand and body models, and

learning algorithms has fueled a growing interest in cap-
turing, understanding, and simulating hand-object interac-
tions [46, 14, 55, 12, 43, 4]. Recent algorithms can pre-
dict hand and object pose increasingly accurately from an
image. However, inferred poses continue to exhibit suffi-
cient error to cause unrealistic hand-object contact, making
downstream tasks in simulation, virtual reality, and other
applications challenging.

A key issue is that physical contact is sensitive to small
changes in pose. For example, less than a millimeter change
in the pose of a fingertip normal to the surface of an object
can make the difference between the object being held or
dropped on the floor. In addition to physical implausibility,
lack of contact and other small-scale phenomena can reduce
the perceptual realism of rendered poses.

In this paper we present ContactOpt, an algorithm that
improves the quality of hand-object contact by refining hand
pose. When given a hand mesh and an object mesh, Con-
tactOpt infers where contact is likely to occur and then op-
timizes the hand pose to achieve this contact.

As shown in Figure 1, ContactOpt consists of two main
components, DeepContact and DiffContact. DeepContact
is a deep network that takes pointclouds sampled from the
hand and object meshes as input and outputs a value from
0 to 1 for each mesh vertex indicating whether it should
be in contact. We trained DeepContact using ground truth
contact data for stable grasps from the ContactPose dataset
[4]. DiffContact is a differentiable contact model that takes
hand and object meshes as input and outputs a value from 0
to 1 for each mesh vertex indicating whether it is in contact.
ContactOpt uses gradient-based optimization to find pose,
translation, and rotation parameters for the MANO hand
model [35] that improve the match between contact esti-
mated by DiffContact and target contact from DeepContact
or an alternate source, such as ground truth contact.
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Notably, ContactOpt takes into account soft tissue defor-
mation in the hand. The inner surface of a human hand un-
dergoes significant deformation when making contact with
objects. For example, the finger pad can deform 2-3 mm
under 1 N force and the palm can deform 5 mm [10, 5].
DiffContact permits interpenetration between the hand and
object meshes with up to 2 mm of penetration being consid-
ered ideal contact. In addition, ContactOpt’s gradient-based
optimization uses a loss function that only penalizes pene-
tration greater than 2 mm.

In our evaluations, ContactOpt resulted in hand poses
that had lower mean per-joint position error (MPJPE), bet-
ter matched ground truth contact (precision & recall), and
were significantly preferred by human participants in two-
alternative forced choice (2AFC) tests. ContactOpt also
outperformed RefineNet, a recent state-of-the-art network
from GrabNet that improves hand poses without explicitly
modeling contact [46].

We conducted two types of evaluations to assess Con-
tactOpt’s performance. For the first type of evaluation, we
evaluated ContactOpt’s ability to refine hand pose estimates
with small inaccuracies. This presents methodological chal-
lenges due to limits in the precision of dataset ground truth
annotations. To overcome this, we used the ContactPose
dataset, which has both pose estimates and measured con-
tact data obtained via thermal imagery. We had ContactOpt
refine these hand pose estimates with respect to ground truth
contact. The refined hand poses better matched ground truth
contact and were preferred by human participants, demon-
strating that ContactOpt can improve state-of-the-art pose
estimates from existing datasets.

For the second type of evaluation, we evaluated Contact-
Opt’s ability to refine hand pose estimates with large inac-
curacies. First, we confirmed that ContactOpt can improve
perturbed hand poses from the ContactPose dataset to bet-
ter match ground truth contact and reduce kinematic error.
Second, we used ContactOpt to refine hand pose estimates
from an existing hand pose estimation network (Hasson et
al. [16]) applied to the HOnnotate dataset [14]. Contact-
Opt’s refined hand poses had lower kinematic error, were
preferred by human participants, and matched more closely
to previously observed hand contact patterns (Figure 2).
ContactOpt also outperformed RefineNet [46] (an end-to-
end grasp refinement neural network) with respect to both
measures. This demonstrates ContactOpt’s value as a post-
processing stage for existing hand-object pose estimation
algorithms for which it has not been specifically trained.
Since ContactOpt operates on hand and object meshes, it
has the potential to improve the output of a variety of re-
cent image-based estimation methods [17, 16, 14, 48], while
avoiding potential generalization issues associated with op-
erating on images.

Inferred Poses ContactOpt

Figure 2: Frequency of hand contact calculated with poses
inferred with an image-based pose estimator [16] (left) and
after refinement with ContactOpt (right). Note the increase
in contact on the finger pads, and the closer match to ther-
mal ground truth hand contact patterns from [4].

In summary, our contributions follow:

• We show that methods that explicitly consider hand-
object contact can improve hand pose estimates at both
coarse (≈cm) and fine (≈mm) spatial scales.

• We show that optimizing hand-object contact can im-
prove the visual realism of rendered grasps.

• We show that optimizing hand-object contact can re-
duce kinematic error from hand pose estimation.

• We present DeepContact, a deep network that esti-
mates where contact should occur across the surfaces
of inaccurately aligned hand and object meshes.

• We present DiffContact, a differentiable contact model
that estimates where contact is occurring between hand
and object meshes.

• We present ContactOpt, an algorithm that performs
gradient-based optimization to improve hand-object
contact by refining hand pose.

2. Related Work
In this work, we use likely contact and a contact model to

improve the pose of a hand grasping an object. Applications
in computer vision, animation, and robotics have driven in-
terests in hand-object interaction tracking from different an-
gles, e.g., recovering poses from input images or generating
grasps based on object pose and geometry. The informa-
tion about contact is playing an increasingly important role
for hand-object interaction tracking, grasp generation and
multiple other related applications.

Datasets of hand-object contact. Recently, there has
been a focus on collecting datasets that include interac-
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tions between hands and objects. FreiHand [55] uses mul-
tiple cameras to extract high-quality annotations using the
MANO model, but do not include the object pose. HOnno-
tate [14] optimizes simultaneously for both hand and object
poses from RGB-D sensors. FHAB [11] leverages a unique
magnetic tracking system to infer the pose of hand and ob-
ject even under occlusion. GRAB [46] uses professional op-
tical motion capture to collect a dataset of people grasping
and manipulating objects. The work additionally infers con-
tact from the proximity of hand and object. However, these
estimates may be noisy due to the very high pose accuracy
required. There may be error introduced due to shape/scale
calibration, marker-offset estimation, and the inability to
measure soft-tissue deformation. While these datasets can
usefully supervise many tasks like image-based hand-object
pose estimation, they do not provide the ground truth mea-
surements needed to reason about the contact interface.

Datasets for contact directly obtained on objects [22, 2]
and hands [44] are complementary to datasets on hand-
object poses. The ContactPose dataset [4] is unique in cap-
turing both ground-truth thermal contact maps, as well as
hand and object pose. The participants held a static grasp
for each of 25 objects while being captured using multiple
RGB-D cameras. The object was tracked using motion cap-
ture, and the hand pose was estimated by aggregating pre-
dictions across all frames from an off-the-shelf RGB hand
pose estimator [6]. A thermal camera measured the body
heat transferred from the participant’s hand to the object,
providing ground truth about the actual contact. A limi-
tation of the method is that the 3D hand pose accuracy is
bounded by the accuracy of the hand pose estimation, so
there may be discrepancies between the contact map and
the MANO posed hand mesh.

Image-based hand-object pose estimation. There is an
extensive body of work on estimating the pose of the
hand using a variety of input modalities, including: gloves
with markers or sensors [51, 15, 12], depth/RGB-D in-
put [53, 40, 39, 27, 49, 1, 45, 50, 42, 47], and RGB or
monochrome images [26, 55, 6, 7, 53, 9, 38], with an in-
creasing focus on hand-object interaction [13, 34, 29, 30,
39, 48, 17, 16, 20, 9, 14]. Researchers have long realized
that inferring and enforcing contact is important for hand-
object interaction tracking [34], and it remains a challeng-
ing task, particularly in the absence of depth data. For RGB-
D hand tracking, hand-object contact modeled as finger-
tip to object distance was part of the energy function dur-
ing optimization with Gaussian Mixture Models in [39].
For image-based prediction, skeletal hand poses [48, 9] or
MANO [35] hand model parameters [17, 16] are predicted
jointly with object geometry or pose in an end-to-end man-
ner. Despite sharing a joint latent space, since the out-
put representations for the hand and object are decoupled,

there can be relative errors in the poses, leading to unre-
alistic grasps. Even though contact can be encouraged at
training time, these networks have no method of enforcing
alignment at test time. Our work complements these exist-
ing methods by leveraging the strength of their joint hand-
object pose prediction, but uses explicit contact inference
and enforcement to achieve higher quality grasps.

Grasp synthesis. A related task is to generate plausible
grasps of a given object geometry for a human or robot
kinematic model. Contact points are first sampled for gen-
erating plausible robotic grasps [37, 23, 36] and anima-
tion [52, 25]. Most of those focus on generating stable
grasps based on heuristic sparse contact points. In Gan-
Hand [8], a dataset of affordances and grasps was pro-
posed to generate plausible human grasps based on input
images. The works that are most similar to ours are Con-
tactGrasp [3] and GRAB [46]. In ContactGrasp [3], dense
ground truth contact maps from ContactDB are used to gen-
erate plausible grasps for a given object geometry; they use
the less-realistic HumanHand model [24], and because the
ContactDB dataset lacks ground truth hand poses they can-
not compare against ground truth or condition on images
as we do. In GRAB [46] the authors leverage their col-
lected data to generate compelling grasps for a variety of
objects. Their RefineNet, which improves the quality of a
grasp given an initial pose, has similarities to our approach,
but is data-driven with poses and fixed contact patterns ag-
gregated over GRAB rather than optimization-based with
contact estimated separately for each grasp. The method
only explicitly considers hand geometry, and because it is
fully learned, may have less ability to generalize. We show
comparisons against this approach when applied to image-
base inference tasks in Sec. 4.

Contact in human pose. Besides for hand-object inter-
action, contact is informative for full human body poses in
human-environment interaction [28]. Inferred contact con-
straints are used in [33] to improve body pose estimation
from videos to mitigate artifacts such as feet sliding. Coarse
contact points are used in generating human poses interact-
ing with scenes [54, 18, 41]. Our work leveraging fine-grain
contact information to improve hand pose in hand-object in-
teraction tracking is in line with and applicable to context-
aware full-body pose estimation and generation.

3. Methods
We represent the grasp with an object mesh O and a

MANO [35] hand mesh H. H is described by parameters
P =

(
θ, β,OtH ,

ORH
)
, consisting of pose, shape, transla-

tion, and rotation w.r.t. object respectively. Pose θ is rep-
resented as a 15-dimensional PCA manifold, which lowers
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Figure 3: Example of multiple hand
poses from Perturbed ContactPose,
all generated from a single dataset
sample

DeepContact

Ground Truth
Contact

Figure 4: Top: DeepContact predicts con-
tact maps for the hand and object as if they
were aligned. Poses from Perturbed Contact-
Pose. Bottom: Ground truth poses and ther-
mal contact.

2mmObject
Finger

a. b. c.

Figure 5: When a human finger con-
tacts a rigid object, point contacts (a)
are rare. More commonly, the soft
tissue in the finger conforms to the
surface (b) so that the contact spreads
across a larger area. While the
MANO mesh does not locally deform
to match the surface, we can encour-
age the optimizer to create matching
area-based contact by marking ver-
tices as “in contact” even when they
are 2mm inside the surface (c).

the high-dimensional joint angle representation to a com-
pressed space of normal hand poses.

Given a noisy estimate of P (which typically comes from
a image-based algorithm), we seek a better grasp by exploit-
ing the hand-object contact information. Figure 1 shows an
overview of our approach. In the following, we describe
our learned contact map estimation module DeepContact
(Section 3.1) and our differential contact model DiffContact
(Section 3.2) that is iteratively updated according to the op-
timized hand pose to reproduce the estimated contact (Sec-
tion 3.3).

3.1. DeepContact: Learning to Estimate Contact

Given an object mesh O and and hand mesh H with po-
tentially inaccurate pose P, this module learns to infer con-
tact on the hand and object vertices. The motivations for
explicitly predicting contact and choosing this input repre-
sentation are discussed in Section 1 and empirically vali-
dated in Section 4.

We represent the meshes H and O as point clouds, and
use PointNet++ [32] to predict contact. The object point-
cloud contains 2048 points randomly sampled from the ob-
ject. The hand point cloud contains all 778 vertices of the
MANO mesh. We employ the “mesh” features, training
loss, and discrete contact representation of Brahmbhatt et
al. [4]. The “mesh” features capture distances from each
point to the hand and object, as well as normal information.
Additionally, we include a binary per-point feature indicat-
ing whether the point belongs to the hand or the object. The
network predicts contact as a classification task, where the
range [0, 1] is split into 10 bins. We train DeepContact with
the standard binary cross-entropy loss.

Similarly to GrabNet [46], we train this module on a
dataset of randomly perturbed hand poses from the Con-
tactPose dataset, which we call Perturbed ContactPose.

The hand mesh is modified by adding noise to the pa-
rameters ∆θ ∼ N (0, 0.5), ∆OtH ∼ N (0, 5) cm, and
∆ORH ∼ N(0°, 15°). Object contact is supervised with
ground-truth thermal contact from ContactPose. To gen-
erate the target hand contact map, we run DiffContact de-
scribed in Section 3.2. By applying multiple perturbations
to each grasp, a training/testing split of 22k/1.4k grasps is
generated.

Figure 3 shows some example perturbations, and Figure
4 shows an example contact prediction. Hand and object
poses that are farther from a particular grasp tend to result
in larger and more diffuse areas of predicted contact.

3.2. DiffContact: Differentiable Contact Model

To optimize the hand parameters P to match the fixed
contact predicted by the learned contact estimation mod-
ule, we need to model a hand-object contact map accord-
ing to the current meshes O,H(P). We propose a contact
model using virtual capsules that is differentiable w.r.t. P,
as shown in Figure 6. Our virtual capsules have useful at-
traction extended beyond the surface (which a binary prox-
imity would not) and approximately model soft hand tissue
deformation.

More concretely, we place a virtual capsule at every ob-
ject vertex vOi and orient it along the object surface nor-
mal nOi . This capsule has a principal line segment de-
fined by vOi + αnOi , α ∈ [−cbot, ctop] defines the verti-
cal extent of of capsule. Let φ(x) be the Euclidean dis-
tance from a 3D point x to this line segment, φ(x) =
minα∈[−cbot,ctop] ||x − (vOi + αnOi )||2. The contact is de-
fined to be uniformly 1 for points such that φ(x) < crad and
falls off proportionally with distance outside crad as crad

φ(x) .
Let vHj (P) be the hand vertex at pose P with the smallest
distance φ to the object vertex vOi . The contact map at the
object vertex vOi is expressed as:
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Figure 6: Capsule fields are placed on each
vertex of the object, aligned with the vertex
normal. If there are any hand vertices inside
the capsule, the object point is marked as be-
ing in full contact, c = 1.

Figure 7: Left: Hand and object
from ContactPose dataset. Center:
Thermal contact from ContactPose.
Right: Contact from the proposed
differentiable contact model (Section
3.2).

Figure 8: Optimization of hand pose
to match the ground truth thermal
contact map. From left to right: hand
pose at selected iterations during op-
timization.

CO
(
vOi ;P

)
= min

(
crad

φ(vHj (P))
, 1

)
. (1)

The same procedure can be used to calculate the con-
tact map on the hand surface. We choose an asymmetric
cbot > ctop such that the region considered “in contact” ex-
tends farther inside the mesh than outside, which approx-
imately models soft hand tissue deformation as shown in
Figure 5. In our experiments, ctop = 0.5mm, cbot = 1mm,
and crad = 1mm. As the total capsule depth inside the ob-
ject is cbot + crad = 2mm, this conservatively matches the
2−3mm finger pad deformation found in the biomechanics
literature [5, 10].

Figure 7 shows an example of object contact computed
with this model. Because the generated contact has a grad-
ual dropoff, this provides gradients for optimization. Ad-
ditionally, the resulting contact maps have diffuse edges,
which appear visually similar to thermal contact maps
[2, 4]. The generated contact is an area instead of a sin-
gle point.

3.3. Contact Optimization

We now iteratively optimize hand mesh parameters P to
minimize the difference between the current contact maps
CH(P) and CO(P) computed using DiffContact (Section
3.2), and the target contact maps ĈH and ĈO as predicted
by DeepContact, Sec. 3.1, or from ground truth thermal
contact. Our contact loss for the object surface is:

EO(P) =

{
λ|CO(P)− ĈO| if CO(P) < ĈO
|CO(P)− ĈO)| otherwise

(2)

Here we use λ > 1 to penalize “missing” contacts (where
the target contact map is higher than the value estimated
by DiffContact from the current pose P) more heavily than

“unexpected” contacts. This is based on the empirical ob-
servation that it is visually worse for the hand to “hover”
over the object than to be slightly interpenetrating. We ap-
ply a corresponding loss EH(P) to penalize differences be-
tween the target hand contact map ĈH and CH(P). We use
λ = 3 in both cases.

We also include a term that discourages penetrations be-
yond cpen. For each object vertex vOi , object surface normal
nOi , and nearest hand vertex vHi (P), the penetration loss is
defined as

Epen(P) =
∑
i

max
(
0, (vOi − vHi (P)) · nOi − cpen

)
,

(3)
where cpen = 2 mm, following [5]. The final loss is
E(P) = EH(P) + λOEO(P) + λpenEpen(P).

The loss is minimized by the ADAM optimizer [21] us-
ing gradients computed by PyTorch Autograd automatic
differentiation [31]. We use a learning rate of 0.01 and
optimize for 250 iterations. Optimizing a minibatch of 64
{H,O} hand-object pairs takes approx. 4s (roughly 62ms
for each). We reweight the gradients for the different com-
ponents of P to match their intrinsic scales. See the supple-
mentary material for more details.

Random Restarts. Since the contact optimization is lo-
cal, a poor initialization (e.g. initial hand position on the
wrong side of an object) can result in the optimizer settling
into a bad local minimum. We avoid this by applying the
pose optimization to several perturbations of the provided
pose and select the result with the lowest loss.

4. Evaluation
We evaluate ContactOpt on the ContactPose and HOn-

notate datasets. In each case, the refined hand mesh is eval-

5



a) b) c)

Figure 9: Examples of contact inaccuracy in dataset ground
truth: (a) ContactPose [4] (alignment offset), (b) HOnno-
tate [14] (hand self-penetration, hand-object gap), and (c)
FHAB [11] (hand-object penetration).

uated using the following metrics.

• Intersection Volume (cm3): The intersection vol-
ume of meshes H and O is calculated from their
mesh union. The per-sample standard deviation is also
shown.

• Mean Per-Joint Position Error (MPJPE) (mm):
The average L2 per-joint kinematic error with respect
to the ground truth hand [19].

• Contact Coverage (%): The percentage of hand
points between -2mm and +2mm of the object surface.

• Contact Precision/Recall (%): This quantifies how
well the contact from the refined hand mesh matches
the thermal contact map. A binary object contact map
is obtained by considering the object points within ±2
mm of the hand surface to be in contact. Precision and
recall are calculated by comparing this to the thermal
contact map thresholded at 0.4, following [4].

• Perceptual Evaluation (%): Six evaluators who were
unfamiliar with the research were recruited to judge
the relative quality of grasps in two-alternative forced
choice tests (2AFC). Each participant was shown two
hand-object pairs and asked to judge “Which looks
more like the way a person would grasp the object?”.
In pilot studies, we found that non-experts had dif-
ficulty comparing grasps with small differences, so
pairs with less than a 5 mm MPJPE difference were
removed. For each method, the evaluators judged 75
pairs of grasps with an equal number randomly se-
lected for each object. The mean and 95% confidence
intervals are shown. More details of this evaluation can
be found in the supplementary material.

4.1. Refining Small Inaccuracies

Recent hand-object interaction datasets use a variety of
techniques to capture hand and object pose, such as mag-
netic trackers (FHAB [11]), multi-view reconstruction from
RGB-D cameras (HOnnotate [14]) and/or motion capture

systems (ContactPose [4], GRAB [46]). Despite using high
quality sensors, errors on the centimeter-level are not un-
common (Figure 9).

However, when considering the realism of grasps, mil-
limeters matter. Gaps between the hand and object result
in unstable grasps, but are also visually unsatisfying. Sim-
ilarly, unrealistic penetration is physically impossible. No-
tably, a few millimeters of these errors is inconspicuous in
a euclidean error metric, but results in an impossible grasp.

ContactOpt can be used to resolve these types of er-
rors when applied to already high-quality poses provided
by dataset annotations.
Refining ContactPose Dataset Poses: Millimeter-scale re-
finement is demonstrated by refining the ContactPose an-
notated hand meshes. Rather than estimating contact using
DeepContact, the ground truth object contact map is used
as a target. Hand contact is not used. Table 1 and Figure 11
show the results of this refinement.

Both contact recall and precision metrics increase,
demonstrating that ContactOpt improves the self-
consistency between ground truth contact and mesh
poses. There is both less unwanted contact as well as
excess contact.

However, it is difficult to quantify the holistic quality of
a grasp. We perform a Perceptual Evaluation where hu-
man participants choose the most natural-looking grasp. As
shown in Table 1, participants favored the refined grasps at
over a 2:1 ratio. ContactOpt is able to consistently resolve
cases of millimetric penetration or under-shoot and pull the
fingers into realistic contact with the object, which is no-
ticed by the participants.

This demonstrates that contact and accurate poses can be
used together to achieve even higher quality than is possible
with pose alone.

4.2. Refining Large Inaccuracies

4.2.1 Perturbed ContactPose

We test the full ContactOpt pipeline on Perturbed Contact-
Pose (Section 3.1), which contains poses with a mean error
of 8cm. This tests the ability to improve hand poses with
large errors. Results are shown in Figure 12 and Table 1.

Despite being initialized from a heavily misaligned hand
pose, the pipeline is still able to reduce kinematic error
(MPJPE) by approximately 70% and improves perceptual
grasp quality dramatically. Additionally, the refined meshes
are more consistent with the ground truth contact maps,
even though they are not provided to the algorithm.

However, some kinematic error remains. Qualitatively,
this is because the objects have many valid grasp modes
(i.e. grasping an apple in any rotation), which are not pos-
sible to recover from the inaccurate initial pose. Although
most refined meshes are visually high quality, often a slight
translation results in a large kinematic error.
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Figure 10: Distance of hand points to object
surface, before and after refinement of Con-
tactPose. Note that unrealistic deep interpen-
etrations (negative) have been mostly elimi-
nated while the fraction of vertices near the
surface of the object [−2mm, 2mm] has in-
creased.

ContactPose

Refined Meshes

Figure 11: Top: Original meshes from ContactPose with misalignment be-
tween hands and contact maps. Bottom: After refinement using ContactOpt.
See Sec. 4.1.

Dataset ContactOpt Intersection MPJPE Score (%) ↑
Refinement Volume (cm3) ↓ (mm) ↓ Perceptual Coverage Precision Recall

ContactPose[4] × 2.45 ± 1.99 0.00 31.1 ± 4.7 6.9 64.6 34.0
X 1.35 ± 0.90 8.06 68.9 ± 4.7 8.9 75.9 50.0

Perturbed × 8.46 ± 16.49 79.89 N/A 2.3 9.9 11.5
ContactPose X 12.83 ± 8.00 25.05 N/A 19.7 38.7 54.8

Table 1: Effect of ContactOpt refinement on the ContactPose ground-truth (top 2 rows) and Perturbed ContactPose dataset
(bottom 2 rows). The precision and recall scores quantify (Sec. 4) agreement with the measured contact map. ContactOpt
improves both perceptual quality and contact agreement.

4.2.2 Image-Based Pose Estimates

One of the applications of ContactOpt is to refine the pre-
dictions from an image-based pose estimator. In this task,
3D hand and object pose are often estimated using CNNs.
For approaches that operate on single-frame RGB images,
errors in the multiple-centimeter range are typical, leading
to physically implausible grasps. We apply ContactOpt to
the poses generated by a single-frame RGB pose estima-
tor. Note that in this setting, there are no image-based con-
straints placed on the optimization, thus allowing total free-
dom of pose refinement.

We use the baseline pose estimation network from Has-
son et al. (2020) [16] and retrain it on a training split of
the HOnnotate dataset. As the network’s object predictions
are often unstable, the object shape and pose are taken from
ground truth. Additionally, poses where the ground truth is
not in contact are filtered out. More details can be found in
the supplementary material.

We demonstrate that DeepContact is able to generalize
well to new datasets. Despite being trained on the Per-
turbed ContactPose dataset, it can still perform acceptably

on HOnnotate, which has both different objects and fea-
tures dynamic grasps. Generally, since hand and object
geometry is mostly consistent across datasets, the domain
gap is smaller than modalities such as RGB, where learned
methods often must be completely retrained. We qualita-
tively find that DeepContact is able to transfer hand contact
more reliably than object contact, as the hand representation
(MANO) is consistent across datasets.

Results from this task are found in Table 2. Human eval-
uators favored the refined grasps over the initial grasp es-
timates by a ratio of 6:1. Additionally, the frequency of
contact across the hand for the refined grasps (Figure 2) is
similar to ground truth frequencies of contact, while the fre-
quency of contact for originally inferred grasps lacks key
features such as greater frequency of contact with the tips
of the fingers.

As the dataset contains shapes with many grasp modes
(i.e. boxes), DeepContact may have difficulty predicting the
correct grasp location from a low quality inferred grasp.
Figure 12 shows a refined grasps with high perceptual qual-
ity but a large MPJPE error metric. Despite this, ContactOpt
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Initial Pose 
with Target 

Contact from
DeepContact 
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ContactOpt

Ground 
Truth 

Image-Based Pose EstimatesPerturbed Grasps from ContactPose

Figure 12: Application of ContactOpt to poses from Perturbed ContactPose and poses generated by an image-based pose
estimator. Top: Hand pose inferred by pose estimator with hand and object contact inferred by DeepContact. Middle:
Resulting poses after refinement with ContactOpt. Bottom: Ground truth annotations from ContactPose/HOnnotate dataset.
The first column presents an example where the refined grasp is of higher perceptual quality, but as DeepContact estimated a
different grasp mode, the grasp has high kinematic error. More examples are available in the supplementary material.

Method Intersection MPJPE Score (%) ↑
Volume (cm3) ↓ (mm) ↓ Perceptual Coverage

Image Pose Estimator [16] 15.3 ± 21.1 57.7 reference 4.4
RefineNet (n=3) [46] 13.8 ± 19.0 56.3 70.8 ± 4.3 5.3

RefineNet (n=10) [46] 11.6 ± 18.5 64.1 N/A 3.9
ContactOpt (ours) 6.0 ± 6.7 48.1 84.9 ± 3.4 14.7

HOnnotate Ground Truth [14] 1.9 ± 2.8 0.0 N/A 2.5

Table 2: Effect of RefineNet and ContactOpt algorithms on the hand pose predicted by Hasson et al. [16] on the HOnnotate
dataset. The perceptual studies compare refined poses against the original image-based estimates. The ContactOpt refinement
achieves the lowest MPJPE and is favored by human evaluators.

is still able to lower the mean kinematic joint error by 20%.

4.2.3 Baseline Hand Refinement

We also compared ContactOpt to a baseline hand pose re-
finement method. RefineNet [46] is an end-to-end model
trained on the GRAB dataset [46] to refine initial coarse
grasp proposals. Given a hand and object mesh, the net-
work predicts pose, rotation, and translation updates. As
RefineNet is an iterative method, it is benchmarked with 3
iterations (following the paper) and 10 iterations.

5. Conclusion
We introduce ContactOpt, a method to refine coarsely

aligned hand and object meshes. DeepContact estimates

likely contact on both the hand and the object. DiffCon-
tact then estimates contact based on the current mesh pose.
The error between these two estimates is used to optimize
hand pose to achieve the target contact.

We show that ContactOpt is able to refine both dataset-
quality meshes when ground truth thermal contact is pro-
vided, as well as improve pose estimations from images,
even when tested on a novel object set.

Additionally, we demonstrate experimentally that the
generated grasps are of high quality and physically plau-
sible. Our method increases agreement with the target con-
tact map, has lower kinematic error, and produces visually
satisfying grasps for human evaluators.
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